A Geometric Description of Modular Lattices

نویسندگان

  • Christian Herrmann
  • Douglas Pickering
  • Michael Roddy
چکیده

Baer [1] observed that modular lattices of finite length (for example subgroup lattices of abelian groups) can be conceived as subspace lattices of a projective geometry structure on an ordered point set; the set of join irreducibles which in this case are the cyclic subgroups of prime power order. That modular lattices of finite length can be recaptured from the order on the points and, in addition, the incidence of points with ‘lines’, the joins of two points, or the blocks of collinear points has been elaborated by Kurinnoi [18] , Faigle and Herrmann [7], Benson and Conway [2] , and , in the general framework of the ‘core’ of a lattice, by Duquenne [5]. In [7] an axiomatization in terms of point-line incidence has been given. Here, we consider, more generally, modular lattices in which every element is the join of completely join irreducible ‘points’. We prove the isomorphy of an algebraic lattice of this kind and the associated subspace lattice and give a first order characterization of the associated ‘ordered spaces’ in terms of collinearity and order which appears more natural and powerful. The crucial axioms are a ‘triangle axiom’, which includes the degenerate cases, and a strengthened ‘line regularity axiom’, both derived from [7]. As a consequence, using Skolemization, we get that any variety of modular lattices is generated by subspace latices of countable spaces. The central concept, connecting the geometric structure and the lattice structure, is that of a line interval (p + q)/(p + q) where p and q are points and p, q their unique lower covers. Given a line interval, any choice of one incident point per atom of the line interval produces a line of the space.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Description of Modular Lattices

Baer [1] observed that modular lattices of finite length (for example subgroup lattices of abelian groups) can be conceived as subspace lattices of a projective geometry structure on an ordered point set; the set of join irreducibles which in this case are the cyclic subgroups of prime power order. That modular lattices of finite length can be recaptured from the order on the points and, in add...

متن کامل

MODULARITY OF AJMAL FOR THE LATTICES OF FUZZY IDEALS OF A RING

In this paper, we construct two fuzzy sets using the notions of level subsets and strong level subsets of a given fuzzy set in a ring R. These fuzzy sets turn out to be identical and provide a universal construction of a fuzzy ideal generated by a given fuzzy set in a ring. Using this construction and employing the technique of strong level subsets, we provide the shortest and direct fuzzy set ...

متن کامل

Left-Modular Elements of Lattices

Left-modularity is a concept that generalizes the notion of modularity in lattice theory. In this paper, we give a characterization of left-modular elements and derive two formulae for the characteristic polynomial, /, of a lattice with such an element, one of which generalizes Stanley's theorem [6] about the partial factorization of / in a geometric lattice. Both formulae provide us with induc...

متن کامل

Semimodular Lattices and Semibuildings

In a ranked lattice, we consider two maximal chains, or “flags” to be i-adjacent if they are equal except possibly on rank i . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted in [9], there is a “Jordan-Hölder permutation” between any two flags. This permutation has the properties of an Sn-distance function on the chamber system of flags. Using these noti...

متن کامل

Modular Elements of Geometric Lattices

Let L be a finite geometric lattice of rank n with rank function r. (For definitions, see e.g., [3, Chapter 2], [4], or [1, Chapter 4].) An element x s L is called a modular element if it forms a modular pair with every y e L , i.e., if a<~y then a V ( x A y ) = (a v x )Ay . Recall that in an upper semimodular lattice (and thus in a geometric lattice) the relation of being a modular pair is sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013